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Interpretation of Protein Structure and Dynamics 
from the Statistics of the Open and Closed Times 
Measured in a Single Ion-Channel Protein 

Larry S. Liebovitch i 

Ion channels are proteins in the lipid cell membrane. They spontaneously 
fluctuate between conformational shapes that are open or closed to the passage 
of ions. The ionic currents through an individual channel can be resolved by 
the patch clamp technique. Thus, the time sequence of open and closed con- 
formational states can be measured in one channel molecule. The probability 
density function of the dwell times in the open and closed states displays 
scaling functions that may arise from: (1) a large number of conformational 
substates having a continuous distribution of activation energy barriers, 
(2) time-dependent changes in the energy barriers between states, or (3) local 
interactions that constrain local structures which interact hierarchically to form 
global structure. 
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1. I N T R O D U C T I O N  

Ions in solut ion canno t  easily cross the lipid membrane  that sur rounds  

cells. However,  these ions can enter or exit the cell by passing through ion 
channel  proteins that  span the cell membrane.(1) Each channel  protein can 
have different conformat ional  states. The difference in energy between these 
states is small enough so that  thermal  f luctuat ions cause the protein to 

switch spontaneous ly  from one to another.  In  some states, the channel  has 
a central  pore that  allows ions to pass through the protein. The p icoamp 
current  through an individual  open channel  can be resolved by the patch 
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clamp technique. (2) Thus, the sequence of the open and closed times can be 
measured and their statistical properties determined. This information on 
the fluctuations in a single protein is very valuable because other bio- 
chemical or biophysical techniques measure many molecules at once, each 
of which may be in a different state. We use this technique to study the 
properties of the ion channels in the layer of cells that lines the inside of 
the cornea. (3) Ion transport through this cell layer keeps the cornea dry and 
therefore transparent for good vision. (4) 

Important information about the physical properties of the channel 
protein can be obtained from the probability density function of the dwell 
times in the open and closed states. In order to analyze these data it had 
been assumed that the channel protein has only a few, stable, well-defined, 
discrete, independent states and that the switching between these states is 
inherently random and thus can be described by a Markov process. (1'2) 
Each transition between states produces another exponential term and the 
number of such terms required to fit the data was used to determined the 
number of discrete channel states. Since the sum of 1-6 exponential terms 
was required to fit the data, it was concluded that the channel protein has 
1-6 stable, discrete states. 

Concepts from nonlinear systems give us new ways to analyze these 
data that provide new insight into the physical properties of the channel 
protein. For example, the current through the channel is self-similar in 
time, namely, there are bursts within bursts within bursts of openings 
and closings. (3'5'6) The probability density functions of the dwell times 
measured at different time scales have similar distributions. Hence, events 
at one time scale are related to events at other time scales. Thus, we can 
fit the probability density functions of the dwell times t by a scaling 
functionf(t)  that describes how the probability to change states varies with 
the dwell time in the open or closed state. (3'5"6) These scaling functions 
often have a power-law 

f ( t )  oc t - ~  (1) 

or stretched-exponential form 

f ( t )  oc exp(-kt~),  0<e~< 1 (2) 

The existence of a scaling function implies that the stable, discrete 
states postulated by the Markov models in order to fit the data may not 
exist. We describe three different physical interpretations of the origin of 
these scalings. 
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2. S T R U C T U R A L  I N T E R P R E T A T I O N  

The biophysical properties of proteins bound in the lipid cell mem- 
brane, such as ion channels, are technically more difficult to measure than 
those of soluble proteins such as globular proteins that function as enzymes 
inside of cells. Thus, less is known about the physical properties of mem- 
brane proteins than is known about globular proteins. However, it is likely 
that the physical properties of both globular and membrane proteins are 
similar. In globular proteins, the distribution of activation energy barriers 
between conformational substates can be measured from its effect on 
fluorescent lifetimes (7) or the time course of ligands reaching their binding 
site. (8) Many such experiments have shown that globular proteins have 
very many conformational substates and a continuous distribution of 
activation energy barriers between these conformational substates. 

The scaling functions seen in the ion channel data may arise from the 
distribution of activation energy barriers among the conformational sub- 
states. Dewey and Spencer/9) called this a "structural model" because in 
this model the energy structure of the protein is fixed. Transition state 
theory (J~ predicts that the kinetic rate constant k for a transition over an 
activation energy barrier AE is given by 

kBT - A E  
(3) 

where kB is the Boltzmann constant, T is the absolute temperature, and h 
is the Planck constant. Thus, the distribution of activation energy barriers 
g(AE) can be equivalently expressed in terms of the distribution of rate 
constants g(k) of the transitions between the conformational substates. The 
cumulative probability P(t) that the time spent in a state is greater than t 
is given by the relationship (8) 

S P(t) = g(k)e -kt dk (4) 

The functional form of P(t) depends on the width of the g(k) distribution. 
When the activation energy barrier distribution is very narrow, that is, 
when g(k)= 6(k-ko), then P(t)= exp ( -ko t ) .  When the activation energy 
barrier distribution is very broad, that is, when g(k)=cons t ,  then 
P(t) oct -1. The intermediate forms of P(t) connecting these two extremes 
can be parametrized by the stretched exponential 

P(t)=exp(-at  b) where 0 < b ~ < l  (5) 
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and g(k),  evaluated from the inverse Laplace transform of Eq. (4), (11~ is 
given by 

1 {exp[ - k x  - ax b cos(bTz)] } sin[ax b sin(bT~)] dx g(k  ) = 7z (6) 

Other scaling functions P(t)  can be represented by other g(k)  distributions, 
such as those with high- or low-energy cutoffs. (m 

Different ion channels have different structure. The scaling functions of 
some channels are power laws, (5'12) which implies that there are many 
similar conformational substates, many pathways between them, and a 
thus broad distribution of activation energy barriers. In other channels, the 
scaling functions are exponentials, (5) which implies that there are few 
similar conformational substates, few pathways between them, and thus a 
narrow distribution of activation energy barriers. Some channels have 
different characteristics at different time scales, which implies that different 
processes, having different widths of activation energy barrier distributions, 
operate at different time scales. 

3. D Y N A M I C  I N T E R P R E T A T I O N  

Many different experimental methods (13' 14) and molecular dynamic 
simulations(X4, 15~ have shown that globular proteins have time-dependent 
energy barriers. Often, the reaction mechanisms of enzymes are hard to 
understand in terms of the time-averaged position of the atoms because the 
reaction occurs when the protein very briefly fluctuates into a structure 
where the reaction rates are exponentially faster. That is, it is important to 
remember that the net reaction rates are proportional to ( e x p ( - A E / k  B T ) )  
rather than e x p ( - A E / k B  T ) ,  where the brackets denote the time-averaged 
quantities. 

The scaling functions seen in the ion channel data may therefore arise 
from time-dependent changes in the activation energy barriers. Dewey and 
Spencer (9) called this a "dynamic model." The transitions over a sequence 
of different energy barriers may be represented by transitions over one 
barrier that is time dependent. For  example, the stretched-exponential 
scaling of Eq. (5) can also result from a time-dependent rate constant k( t )  
of the form (3~ 

k(t)  oc t  b-1 

Thus, structural and dynamic models are related. However, in some cases, 
time-dependent experiments may be able to differentiate between these two 
types of models. (16~ 
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It had always been assumed that the switching of a channel protein 
from one state to another is an inherently random process. However, the 
output of a deterministic nonlinear system may be so complex that it 
mimics random behavior, a phenomenon now called chaos. Dynamic 
models based on iterative maps (17~ and modified Duffing equations (1~) can 
also produce some of the statistical properties of the scaling functions of 
the ion channel data. In principle, the dimensionality of the phase-space 
sets constructed from the time series of the currents measured through the 
channels could determine if the switching between the open and closed 
states was driven by random or deterministic processes. However, this 
analysis cannot be done with the patch clamp data because the time series 
of those data is self-similar and thus not differentiable. The embedding 
theorems require that the time series be differentiable in order to construct 
the phase space set. (~7~ 

The physical interpretation of chaotic ion channel models is that the 
channel protein functions as a few independent pieces that interact with 
each other. The channel should then be thought of as a nonlinear mechani- 
cal oscillator that can organize nonperiodic thermal fluctuations in its 
structure into coherent motion to drive itself from one conformational state 
to another. This is analogous to the failure of the Tacoma Narrows Bridge, 
where a mechanical structure organized the nonperiodic motion of the 
wind into destructive coherent oscillations. "9~ 

However, the simplest chaotic models do not yield all the scaling func- 
tions found in all the channel data. The additional complexity that needs 
to be added to some chaotic models to produce power law scalings 
suggests that if the channel acts as a deterministic system, it actually 
consists of many small locally interacting functional pieces, rather than a 
few large ones. 

Motions in small molecules are driven by thermal fluctuations. 
Motions in macroscopic objects are driven by mechanical forces. It is not 
clear if channel proteins are large enough to behave partially as true 
mechanical systems. It is also not clear if channel proteins are in local ther- 
modynamic equilibrium~ If proteins dissipate energy through the radiation 
emitted by accelerated charges or by inelastic collisions, then they may be 
in a steady state rather than in equilibrium with the environment. If that 
is true, then there may be long-lived states that correspond to dynamic 
resonances rather than to local minima in the potential energy function. 
Even if the energy dissipated is much less than kB T, the existence of any 
dissipation can break symmetries and thus generate structures in space or 
time. 
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4. N E U R A L  N E T W O R K  I N T E R P R E T A T I O N  

Proteins share many properties in common with spin glasses and neural 
networks.(20 23) Proteins do not have global potential energy minima, 
because of local steric conflicts. This property is called "frustration." In 
order to pass from one local minimum to another may therefore require 
that the potential energy increase before it decreases. That is, the folded 
protein structure may need to unfold slightly before it can refold in a 
slightly different way. This property is called "ultrametricity." Thus, a 
protein has many nearly identical energy minima. These properties are also 
common to spin glasses and neural networks, which suggests that it may 
be helpful to think about structural or dynamic "states" in a different way. 

We now transform the description of a channel protein switching 
between open and closed conformational states from one based on the 
positions of its atoms in physical space to a symbolic space resembling a 
neural network. Consider a neural network consisting of nodes and connec- 
tions between them. Each node corresponds to one physical unit of the 
channel protein such as one atom. If the position in physical space of an 
atom corresponds to that it would have if the channel protein was closed, 
the value of that node will be nearly - 1. If the position in physical space 
of an atom corresponds to that it would have if the channel protein was 
open, then the value of that node will be nearly + 1. At each time step, the 
value at each node is determined from a function of the Connections into 
that node. As the calculation is advanced in time, the values of the nodes 
will change. 

Important  qualitative features arise from this representation. First, 
there are no "states." Although many nodes may have values near one 
extreme, there will always be some nodes with the complementary value. 
Although we could enumerate all possible combinations of the values of all 
the nodes and call them "states," there would be so many of them that this 
is not a useful way to think about what is happening. A more useful 
approach is to think of the channel protein as being approximately open 
or closed, although many of its atoms may be in the "wrong" condition. 

Local constraints between nearby atoms are quite strong and thus 
there are highly ordered structures within local regions. However, these 
local structures may conflict with each other. A useful analogy is a neural 
network that solves a visual illusion called the Necker cube. (24) The Necker 
cube has 8 vertices that can be connected by edges in different ways that 
correspond to two different global patterns. Each vertex is represented by 
one node in the network. In one pattern one particular face of the cube is 
in the front of the object, while in the other pattern it is in the back of the 
object. When a vertex would have a physical position corresponding to one 
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pattern its corresponding node has a value near - 1  and when it would 
have a physical position corresponding to the other pattern its correspond 
node has a value near + 1. The network has an energy function with two 
global minima that correspond to the two global patterns. There are also 
local minima that correspond to some vertices in one pattern and other 
vertices in the complementary pattern. Local constraints near each corner 
are strong and global constraints much weaker. Thus, the energy function 
of the network can evolve into a local minimum where the diagonally 
opposite corners have each satisfied their local constraints, but in con- 
tradictory ways that prevent the formation of a consistent global pattern. 

When the channel is closed most of the nodes have values corre- 
sponding to the closed conformation. Since the channel protein is quite 
large, there are many local regions each of which has been consistently 
ordered into the closed conformation by strong local interactions. Thermal 
fluctuations will be able to flip some local regions to their values in the 
open conformation which will be locally consistent and in conflict with 
their adjacent regions. The structure of the channel protein is always 
bulging out the wrong way in local regions. It is not useful to think in 
terms of "substates" because it is not that the system is at a local energy 
minimum and then shifting to another energy minimum, but rather that it 
is always exploring the barriers as well as the minima. Eventually enough 
local regions will have thermally flipped into the open conformation so that 
they will begin to interact with each other to constrain ever larger regions 
into the open conformation. Larger and larger regions will interact, in a 
hierarchical manner, until most of the atoms will have switched to their 
values associated with the open conformation. Thus the channel protein will 
have switched from closed to open. The hierarchical nature of the dynamics 
will lead to distributions of dwell times with stretched-exponential or power- 
law behavior. 

We are now beginning to test the validity of this qualitative picture 
by formulating neural networks where the connections between nodes 
corresponds to the pairwise forces between atoms in proteins. The 
dynamics of the switching between global conformational shapes predicted 
by these networks will be compared to that measured experimentally and 
that predicted by molecular dynamics simulations. 

5. C O N C L U S I O N S  

The patch clamp technique provides the amazing ability for us to 
follow the fluctuations of an individual ion channel protein between its 
open and closed conformational states. The probability density of the open 
and closed dwell time distributions provides important information on the 
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structure and motion within the channel protein that causes it to open and 
close. We presented three approaches to interpret that data in ways that 
shed light on channel structure and that are consistent with the known 
properties of other proteins. 
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